
Hayes-Roth

DISTRIBUTED INTELLIGENT CONTROL AND MANAGEMENT
(DICAM) APPLICATIONS

AND SUPPORT FOR SEMI-AUTOMATED DEVELOPMENT 1

/

= =

/-

Frederick Hayes-Roth, Lee D. Erman, Allan Terry,.
Teknowledge Federal Systems,

Cimflex Teknowledge Corp.

Introduction

We have recently begun a 4-year effort to develop a new
technology foundation and associated methodology for the
rapid development of high-performance intelligent
controllers. Our objective in this work is to enable system
developers to create effective real-time systems for control
of multiple, coordinated entities in much less time than is
currently required. Our technical strategy for achieving this
objective is like that in other domain-specific software
efforts: analyze the domain and task underlying effective
performance, construct parametric or model-based generic
components and overall solutions to the task, and provide
excellent means for specifying, selecting, tailoring or
automatically generating the solution elements particularly
appropriate for the problem at hand.

For intelligent control _asV.s,W_ebelieve that the domain-
specific software approach holds the promise of providing
great leverage on the software development task whether
software generation is manual, automated, or semi-
automated. In our view, complex and mission critical
systems gene_r_y must have a human analyst in the loop
both to specify desired behavior and to validate tested
designs. Until this process is made extremely regular and
routine, the human will necessarily be involved in nearly
every step of the software development process as well.
Given the lack of regularity and proven automatic
generation means, the htiman's ability to validate overall
designs requires insight intoand hands-on experience with
the details of the software design and generation.
Nevertheless, we believe that significant progress on the
"time to market" for such systems requires much of the
same supporting infrastructure, regardless of the extent to
which productivity enhancements are achieved through
automation or merely improved methodology. This
position is similar to that held by experts in many fields
who state that one should not automate poorly characterized,
highly variable processes. First, we must attempt to
regularize the process, support it with an effective and
efficient methodology, and then automate those po_ons of
the process which give the greatest realm on investment.

: In this paper, we fhst present our specific domain focus,
-briefly describe the methodology and environment we are

1 This work reported here has been supported in part by
DARPA and the US Army ARDEC through contract
number DAAA21-92-C-0028. The opinions expressed here
are those of the authors, not the sponsors.

& Barbara Hayes-Roth
Knowledge Systems Laboratory

Stanford University

Ng3-17513 '

developing to provide a more regular approach to software
development, and then later describe the issues this raises
for the research community and this specific workshop.

Project Objectives and General Approach

Our project aims to develop a new technology
foundation and associated methodology for the rapid
development of high-performance intelligent controllers.
These controllers will be employed in distributed intelligent
control and management (DICAM) applications. Examples
of such applications include intelligent highway systems,
military command and control systems, and factory floor
control systems. Our near-term domain of application is
vehicle management systems, where one or more controllers
may be employed to control a single vehicle, and these
composite controller/vehicles are further aggregated and
organized into higher-levels of control and capability. In a
military context, for example, a single controller may be
used for each subsystem within a tank, each tank system
may be controlled by collectively organizing its
subsystems, the overall tank may be controlled by another
controller that coordinates the tank system controllers,
several tanks may combine to form a platoon with its own
control level, one or more platoons may form a battalion,
and so on.

Our research project is one of several sponsored by
DARPA (the Defense Advanced Research Projects Agency
of the US Defense Department) and the US Army to
advance the technology for domain-specific software
architecture (DSSA). Our project for the Army address the
specific vehicle management task of a howitzer, a tank-like
vehicle that aims at more distant targets. The project has
four principal focus elements. First, we are formulating a
reference architecture for intelligent control. Second, we are
supporting the construction of applications in a
development workspace in which system requirements are
ultimately satisfied by choosing design components that
specialize and particularize components of the generic
reference architecture. Many of the specialized modules and
particular data used to instantiate a design are taken from a
repository. The entire development process is supported by
a rich array of development tools, which incorporate
numerous techniques from both software engineering (e.g.,
control law specifiers, code generators, protocols,
compilers, debuggers) and knowledge engineering (e.g.,
domain modeler, requirements manager, and various
knowledge-based design assistants).

66

Hayes-Roth

The D/CAM Framework and

Supporting Technology

We are developing DICAM simultaneously as a "model"
or framework for understanding control problems and as an
architecture and related environment for building controllers.
There are many reasons why we seek to formulate such a
unifying framework. Foremost among 'these is our belief
that the difficult, time-consuming and often unsatisfactory
process of controller development would benefit from a
more "standard" but flexible approach. Our DICAM
framework provides a generic but customizable model of
controllers that seems to unify a variety of views and
experiences in the control, software and knowledge
engineering disciplines.

DICAM is closely related to the NASA/NBS reference
model for telerobot control systems (NASREM) [Albus,
McCain, & Lumia, 1989]. The reference architecture
includes two principal components in any distributed
intelligent control and management application. First, fin
information base and world model (IB/WM) is a
"conceptually centralized" database/knowledge base that
represents the state of the world. The second principal
component of the DICAM reference architecture is a
collection of semi-autonomous interconnected controllers.
These controllers are differentiated in terms of the scope of
behavior they address, the resources they control, and the
time frame spanned by their decisions.

Each controller is actually divided into two separate but
interrelated components called the domain controller (DC)
and the recta-controller (MC). The DC contains seve!;al
modular functions and prescribes how they interact using
dataflow conventions. The functions include sensing, input
filtering, situation assessment, planning, plan assumption
analysis, execution and effector activation. Each controller
has its own local world module which is a cached view of
the global state represented by the IB/WM. Several
messages flow into and out of the DC. The inputs include
messages received from a superior controller specifying
goals for the controller, messages from sibling controllers
at the same level (such as another vehicle in the same
group), and messages from subordinates, typically reporting
on the outcomes of their efforts. Outputs include subgoals
assigned to subordinates for delegated execution as well as
messages to siblings, for example, to report on current plan
execution objectives or status or to request operating
resources.

Although this general DC structure has proved effective
in applications such as the Pilots Associate [Smith &
Broadwell, 1989; Lark et al., 1990] and robotics [Becker,
1989], dataflow programs in general exploit only weak
knowledge about when to execute functions. The general
rule is to compute any function when all of its inputs are
available. However, there are often too many possible
instantiations to execute all simultaneously, or even with a
small delay. Thus, in situations where more knowledge is
required to achieve excellent results with scarce resources, a
metal-level of control is required [Garvey & Hayes-Roth,
1989; Hayes-Roth, 1985; Hayes-Roth, 1990]. Our recta-
controller is based on the knowledge-based scheduler of the
BB1 blackboard system. This controller utilizes three basic

functions to determine on a cyclical basis which pending
action is best to execute next: an agenda manager to store
and evaluate pending actions; a scheduler to determine the
next action based on the degree of fit between goals of a
control plan and actions pending on the agenda; and, finally,
an executor gives control to the selected actions.

Our basic methodology for development of DICAM
applications consists of a blackboard-like environment
where the "blackboard" is a development workspace and the
"knowledge sources" are system developers augmented by a
wide variety of computer-based tools, including some expert
systems that are capable of autonomous development
activity. We are assembling an Application Development
Support Environment (ADSE) for DICAM applications (see
Figure 1) to provide these capabilities.

The development workspace contains a representation of
the emerging system being developed incrementally over
time. Its elements represent decisions or specifications
linked into a "web" of mutually supporting decisions that
both specify the system design and justify it. We have
combined three lines of research in formulating this
development workspace. First, we have drawn on the
l_lackboard model and op_uortunistic reasoning [Erman et al.,
1980; Hayes-Roth & Hayes-Roth, 1979; B. Hayes-Roth et
al., 1986] as an organizing methodology for incremental
design and development processes. Second, we have adopted
the emphasis of the domain analysis and domain-s_cific
architecture approach to software specification, reuse and
rapid development [Prieto-Diaz & Arango, 1991]. Lastly,
we have adopted and generalized the approach of module-
oriented oro_'ammin_ from our previous research on ABE
[Erman, Lark & Hayes-Roth, 1988; F. Hayes-Roth et al.,
1989; F. Hayes-Roth et al., 1991]. This includes the ideas
of recursive modular composition, distributed control
through message passing using ADTs, system construction
through module composition, and system realization by
deferred binding of processors to modules.

Specifically, the workspaee provides a multi-faceted,
multi-level representation of DICAM software applications.
It provides means for describing the domain model, i.e., the
general characteristics of the task and environment in which
the vehicle or machinery will operate. The general domain
model is then augmented with specialized information about
the specific application being built, such as how many
vehicles, the distances to be traveled, the specific threats and
so forth that the application will address.

At a lower (more concrete) level, the workspace provides
means for representing the functional components and the
physical resources that make up the controlled system, and
it describes how the functional components are composed
and how they are implemented using specific processors,
communication capabilities or other machinery.

In addition, the workspace provides means for
representing the status of the software development process,
including the history of activities and characteristics of the
current overall development.

As is typical of blackboard systems, the workspace
provides means of representing decisions and using state
change to trigger the invocation of appropriate tools.
Decisions in this workspace range from abstract
characterizations of components such as requirements or

67

Hayes-Roth

Development Workspace

Domain
Model:

Applicatk
Model:

Compom
Comm.,
Services,
Resources: D

/

DE
DE][-3
Tools (con" ilers,
expert syst shells,
simulators, etc.)

Figure 1.

goals to particular specifications, including detailed
functional characterization or specific software or hardware
packages that realize the requked capability. We have not
yet settled upon final or formal representation sublanguages
for each level, but are considering various alternatives that
are being suggested in other groups' efforts to conceive
potentially standardizabIe descriptions of modules and
module interfaces (e.g., the DARPA module interconnect
formalism, the DoD STARS repositories, etc.). Regardless
of which specific formalism is used, the description of
modules must include input/output datatypes, function
characterization, implementation requirements, domain
assumptions, and performance metrics. When making a
design decision, the developer specifies some or all of these
attributes along with his or her name and some rationale.
As in all blackboard systems, decisions are changeable, and
multiple competing decisions may coexist. Ultimately,
those decisions that form the best coherent "web" win:
these decisions constitute the overall system specification,
from requirements to implementation, which particularizes
the domain and application models.

Other features of the ADSE that we are developing and
assembling include: A To-Do List keeps an agenda of
pending tasks for the software developers. As with
blackboard systems, actions are triggered when the state of
the Workspace matches a pattern of interest. A Process Plan

The Application Development Support Environment.

is supported that effectively maps patterns of interest found
in the Development Workspace and the current To-Do List
into proposed actions. The proposed actions (shown as Pz)
in the figure might include any of the following: make a
specific design decision; apply a particular tool to a
particular design component with certain parameters; raise
the priority on doing one pending task over others, etc. Our
plan is to support a wide variety of SE methodologies by
providing a general mechanism for representing and
implementing corresponding process plans. A Repository of
reusable components is provided that stores, classifies, and
searches for previously used Development Workspace
structures. Typically these include reusable domain models,
application characteristics, generic function modules,
specific implementation modules, and data to customize or
particularize generic functions for specific application
domains. A Tool Registry provides mechanisms for
enrolling software development tools, describing their
required inputs and associated outputs in terms of patterns
that match characteristics found in the Workspace or Process
Plan and, finally, providing Tool Activators that can
automate or semi-automate invocation and application of
tools. The tools consist of compilers, generators,
simulators, expert system shells, etc. Lastly, the ADSE
incorporates specialized tools called KBDAs that provide
knowledge-based assistance in to the software development
process. These tools can include, for example: requirements

68

Hayes-Roth

Table 1. As

Aspect
Opportunistic Design

Controller Architecture

Information Base/
World Model

KB Design Assistants

Repository

Engineering Foci

Component Characterization

_ects of the Development Methodology
Elements

Multiple levels and representations
Abstract to particular characterizations
Incremental decisions
Linked decisions form design web
Prescriptive process models permitted
Humans and computer tools cooperate
Generic modules
Flexible, tailorable controllers
Schema of ADTs for IB/WM
Message processing using ADTs and intermodule protocols
Distribution
Fractal control model
Shared data managed by IB/WM
Conceptually centralized, single-copy, but allows physical

partitioning
Typically distributed
Time response must satisfy requirements ranging from sub-

millisecond to a few seconds
Different levels of aggregation
Different meta-types: data, propositions, rules, plans
Temporally organized and continually renewinq
Mini-expert systems watch process state and advise user at key

events
Tool-use expert systems help humans apply development tools
Stores and uses partial matches to retrieve "components" at any

level
Components classified in taxonomy from generic to particular
Domain-specific customizations available to particularize generics
Domain modeling
Requirements engineering
Knowledge engineering, about DICAM and DICAM development

tools and methods
Performance objectives, measurement and attainment
Goals & Constraints
Models: Behavior, timing, functionality
Interfaces:

Datatypes
Module partners
Conversation types
Protocols
Messages to other devices

Resource/environment prerequisites

analyzers that suggest appropriate reusable components;
redesign advisors that suggest ways to modify an existing
design in light of a change in requirements or capabilities;
and intelligent interfaces that set up and run complex tools
to assist a developer in generating or analyzing some code.

To implement the ADSE we are using a number of "off-
the-shelf" technologies. Chief among these are: ABE IF.
Hayes-Roth et al., 1991], as an integration environment for
tools, a composition framework for modular, real-time
applications, and a catalog and classification system for the
reuse repository; BB1 [B. Hayes-Roth, 1985], as an
incremental workspace, process model interpreter, and
agenda manager; M.4, a commercial expert system shell, for
buildhag the KBDAs; and the Requirements Manager (RM),
a DARPA-sponsored software product for collecting,
managing, and evaluating application requirements and

validating application designs against requirements [Fiksel
& Hayes-Roth, 1990]. We are also evaluating many other
commercial and research SE tools for use in the ADSE [cf.
NIST ISEE Working Group, 1991].

Development Methodology

The overall approach we are taking to development is
summarized in Table 1. The seven principal facets fall into
three basic categories of methods. The controller
architecture and information basedwodd model constitute the
reference architecture for the domain of intelligent control.
The repository, engineering fool, and component
characterization concerns define our approach to domain-
specific software engineering. The opportunistic design and

69

Hayes-Roth

KB design assistants define our approach to defining a
process of software development that can, at least, be semi-
automated.

We are currently applying the methodology to
demonstration problems chosen from defense applications.
As an example, consider the task of achieving intelligent
control of field artillery systems, such as mobile howitzers.
Howitzers, like other military vehicles, are self-propelled,
mobile vehicles with offensive guns. Their primary
mission is ground-based artillery shelling of over-the-
horizon targets. They are very similar to tanks, armored
personal carriers, and helicopters in general information
processing terms. Thus, all military vehicles of this sort
share elements of the domain model, but differ increasingly
as these models and the corresponding application model
become detailed.

The general DICAM architecture is specialized for Army
Vehicle Management Systems by the selection of levels:
battalion, battery, platoon, vehicle (section), system,
subsystem. Then it is further specialized for a particular
howitzer, e.g. the "ABC Howitzer," by the selection of
functional controllers and their relationships. Each group of
ABC howitzers is headed by a Platoon Leader who reports
to higher headquarters. The Chief of Section of each vehicle
reports to the Platoon Leader and is responsible for the Gun
Control, Loading, and Driving functions.

Following the domain-specific approach, after
developing the generic domain model, the next task for
system developers is to elaborate the application model. The
task application model enumerates desired functionalities
associated with each level of control. Several generic
functions appear repeatedly across different control levels,
such as tasking subordinates with subgoals or performing
external and system status analyses as part of situation
assessment. These functionalities are also common across
the analogous components in other vehicles: tanks, missile
launchers, infantry fighting vehicles, etc. Thus, there are
two levels of functional similarity:

• across different components within a vehicle, and

• across the similar components in different vehicles. [8]
To convert the informal task analysis into a more

formal, explicit application model, the system developer
selects from among generic functionalities in the reference
architecture, specializing and customizing them foi the [9]particular needs of the target application. Then to construct
an application system, the developer uses these refined
specifications either to select components from the
repository that can perform these functions or to drive
automatic, semi-automated, or manual code generation.

Issues Raised

Our research raises many issues, some of which are
highlighted here:

• Is our methodology (as described in Table 1) effective?
• Does our reference architecture provide enough structure

to make specification practical and component software
reusable?

• How can a critical mass of reusable components be
created?

• How can modules be characterized?

• How can the languages used for characterizing modules
be standardized?

• How can modules be designed so that they can be
specialized or customized to new applications?

• Which tasks in the development process are most
worthy of automated support?

• How can the space generated by a diversity of vehicles,
environments and control objectives be structured to
maximize the potential for reusability of specifications and
solution components?

References

[I] Albus, J. S., McCain, H. G., and Lumia, R.
"NASA/NBS standard reference model for telerobot
control system architecture (NASREM)," National
Bureau of Standards, Tech. Note 1235. 1989.

[2] Becker, J. M. "The generic control level: a unifying
view," Proc. ROBEXS "89, Palo Alto, CA, 1989.

[3] Erman, L. D., Hayes-Roth, F., Lesser, V. R., and
Reddy, R. "The Hearsay-II speech-understanding
system: Integrating knowledge to resolve uncertainty,"
Computing Surveys 12(2), June, 1980, pp. 213-253.

[4] Erman, L. D., Lark, J. S., and Hayes-Roth, F. "ABE:
An environment for engineering intelligent systems,"
IEEE Transactions on Software Engineering, 14(12),
December, 1988.

[5] Fiksel, I. and Hayes-Roth, F. "A requirements
manager for concurrent engineering in printed circuit
board design and production," Proc. of the Second
National Symposium on Concurrent Engineering,
Morgantown, WV, February, 1990.

[6] Garvey, A. and Hayes-Roth, B. "An empirical analysis
of explicit vs. implicit control architectures," in
Jagannathan, V. and Dodhiawala, R. T. (eds.), Current
Trends in Blackboard Systems, Academic Press, 1989.

[7] Hayes-Roth, B. "Blackboard architecture for control,"
Artificial Intelligence, vol. 26, pp. 251-321, 1985.
Reprinted in: Bond, A. and Gasser, L. (eds.), Readings
in Distributed Artificial Intelligence, Morgan
Kaufmann Publishers, Inc., 1988.

Hayes-Roth, B, "Architectural foundations for real-
time performance in intelligent agents," Real-Time
Systems: The International Journal of Time-Critical
Computing, 2(1/2), 1990, pp. 99-125.

Hayes-Roth, B. and Hayes-Roth, F. "A cognitive
model of planning," Cognitive Science, 1979, 3, 275-
310. Reprinted in A. Collins and E. E. Smith (eds.),
Readings in Cognitive Science: A Psychological and
Artificial Intelligence Perspective. Morgan Kaufmann,
1988; and in J. Allen, and J. Hendler, and A. Tate
(eds.), Readings in Planning, Morgan Kaufmann,
1990.

[10] Hayes-Roth, B., Iohnson, M.V., Garvey, A., and
Hewett, M. "A_,plications of BB1 to arrangement-
assembly tasks, Journal of Artificial Intelligence in
Engineering, 1986.

[I1] Hayes-Roth, F., Davidson, I.E., Erman, L.D. and
Lark, J.S. "Frameworks for developing intelligent
systems: The ABE systems engineering
environment," IEEE Expert, June, 1991.

[12] Hayes-Roth, F., Erman, L. D., louse, S., Lark, J. S.,
and Davidson, J. "ABE: A cooperative operating

70

